
Hyper-SD简介
Hyper-SD 是字节跳动推出的一种先进图像生成框架,结合了轨迹分段一致性蒸馏(TSCD)和人类反馈学习(RLHF),显著提升了扩散模型在少步骤推理下的图像生成性能。该模型结合了轨迹保持和重构策略,实现了快速且高质量的图像生成,同时支持多种风格和可控生成,为生成式AI领域带来新SOTA性能。
与现有的扩散模型加速算法相比,该方法取得了卓越的加速效果。经过大量实验和用户评测的验证,Hyper-SD 在SDXL和 SD1.5 两种架构上都能在 1到8 步的推理过程中生成高质量的图像,极大地提高了生成速度和效率。

Hyper-SD:字节跳动推出的先进图像生成框架
项目地址:
- 项目主页:https://hyper-sd.github.io/
- 论文地址:https://arxiv.org/abs/2404.13686
- Huggingface 地址:https://huggingface.co/ByteDance/Hyper-SD
- 单步生成 Demo 地址:https://huggingface.co/spaces/ByteDance/Hyper-SDXL-1Step-T2I
- 实时画板 Demo 地址:https://huggingface.co/spaces/ByteDance/Hyper-SD15-Scribble
Hyper-SD的主要功能特点
- 轨迹分段一致性蒸馏:通过将扩散模型的时间步长划分为多个段落,并在每个段落内保持一致性,Hyper-SD 能够在减少去噪步数的同时,保持图像生成的高质量。
- 人类反馈学习(RLHF):结合人类审美偏好和现有视觉感知模型的反馈,Hyper-SD 能够生成更符合人类审美的图像,提升生成效果。
- 一步生成强化:使用分数蒸馏技术,Hyper-SD 增强了模型在单步生成中的性能,这对于需要快速生成图像的场景非常有用。
- 低步数推理:Hyper-SD 实现了在极少的步数内进行高效图像生成,显著减少了计算资源的消耗,同时保持了图像质量。
- 风格兼容性:训练得到的加速模型能够适应不同风格的图像生成,增加了模型的通用性和适用性。
适用场景
- 加速图像生成:Hyper-SD 可以显著缩短图像生成时间,提高生成效率,非常适合需要快速生成大量图像的场景。
- 提升图像质量:在单步推理中,Hyper-SD 能够生成高质量的图像,甚至超越原模型的效果,适用于对图像质量要求较高的应用。
- 资源受限环境:Hyper-SD 的低步数推理能力,使其在移动设备、嵌入式系统等计算资源有限的环境中也能高效运行。
- 艺术创作:为艺术家和设计师提供快速高效的图像生成工具,帮助他们更快地实现创意。
- 广告设计:帮助广告公司快速生成高质量的视觉内容,提升广告制作效率。
- 游戏开发:为游戏开发者提供高效的图像生成解决方案,缩短开发周期。
数据评估
关于Hyper-SD特别声明
本站新媒派提供的该工具内容都来源于网络,不保证外部链接的准确性和完整性,同时,对于该外部链接的指向,不由新媒派实际控制,在2024年7月14日 上午11:24收录时,该网页上的内容,都属于合规合法,后期网页的内容如出现违规,可以直接联系网站管理员进行删除,新媒派不承担任何责任。
与Hyper-SD相关工具

Darwin是一个开源项目,专注于自然科学领域的大型语言模型构建,主要涵盖物理、化学和材料科学。通过对科学文献和数据集进行预训练和微调,Darwin 在科学问答和多任务学习任务中表现优异。它结合了结构化和非结构化的科学知识,提升了语言模型在科学研究中的效能。

InspireMusic
InspireMusic 是由阿里巴巴通义实验室推出的开源音乐生成框架,集成了多项音频领域的前沿研究成果,为开发者和研究者提供全面的音乐创作、风格转换和音效合成解决方案。该框架依托多模态大模型技术,支持通过文本描述或音频输入进行智能化创作,并提供完善的模型调优工具链。

Step-Video-T2V
Step-Video-T2V是一款由阶跃星辰与吉利汽车联合开源的文本生成视频大模型,支持中英文输入,基于 Video-VAE 与 DiT 架构,具备 300 亿参数,最长可生成 204 帧高质量视频。模型引入 DPO 偏好优化,提升画面一致性与真实感,适用于影视创作、教育内容、游戏设计与 AI 多模态研究等场景,支持本地部署与在线体验。

InstructAvatar
InstructAvatar是一个先进的AI框架,它使用自然语言界面来控制2D头像的情绪和面部动作。这个系统允许用户通过文本指令来精细控制头像的表情和运动,从而生成具有情感表现力的视频。

SeedEdit
SeedEdit是一种由字节跳动(ByteDance)豆包团队推出的智能图像编辑模型。它通过自然语言指令简化了图像编辑过程,用户只需输入简单的描述语句,就能实现图像的调整、美化、转换等操作。

ClotheDreamer
ClotheDreamer 是一种基于 3D 高斯方法的工具,用于从文本提示生成可穿戴的、可生产的 3D 服装资产。由上海大学、上海交通大学、复旦大学和腾讯优图实验室共同推出。它采用了一种名为 Disentangled Clothe Gaussian Splatting (DCGS) 的新型表示方法,使得服装和人体模型可以分别优化。

千影QianYing
千影 QianYing 是一款由巨人网络 AI Lab 推出的有声游戏生成大模型,包含游戏视频生成大模型 YingGame 和视频配音大模型 YingSound。通过先进的人工智能技术,千影 QianYing 能够自动生成高质量、有声的游戏视频。YingGame 通过自定义角色、动作控制和物理模拟,创造互动性强的游戏内容;YingSound 则为视频添加高保真音效,实现精确的跨模态对齐和时间同步。

Google Gemini
Google Gemini是由谷歌推出的一款人工智能多模态大模型,于2023年12月6日发布。这个模型具有强大的功能,能够同时识别文本、图像、音频、视频和代码五种类型的信息。它还能理解并生成主流编程语言的高质量代码,如Python、Java、C++,并且进行了全面的安全性评估。

光语大模型
光语大模型是无限光年公司推出的一款结合大语言模型与符号推理的 AI 大模型,融合视觉与语言处理技术,拥有 10 亿视觉模型参数和 130 亿语言模型参数。该模型在金融、医疗等垂直领域表现出色,通过灰盒可信技术确保输出的稳定性和可靠性,有效解决幻觉问题,提升推理精度和可信度。

阿里云百炼
阿里云百炼是基于通义大模型、行业大模型以及三方大模型的一站式大模型开发平台。面向企业客户和个人开发者,提供完整的模型服务工具和全链路应用开发套件,预置丰富的能力插件,提供API及SDK等便捷的集成方式,高效完成大模型应用构建。

WiseDiag-Z1
WiseDiag-Z1是由杭州智诊科技推出的全科医学通用大语言模型,专为医疗领域设计,具有730亿参数和强大的医学知识库。它在知名的医学大模型主流榜单中名列前茅,适用于大多数复杂场景的健康咨询。

紫东太初
紫东太初大模型是中国科学院自动化研究所和武汉人工智能研究院推出的新一代大模型。它从三模态走向全模态,支持多轮问答、文本创作、图像生成、3D理解、信号分析等全面问答任务。这个大模型具备更强的认知、理解、创作能力,为用户带来全新的互动体验。

讯飞星火大模型
讯飞星火大模型是科大讯飞发布的一个基于深度学习的自然语言处理模型,以中文为核心,具备跨领域多任务上的类人理解和生成能力。注册免费领取1500万Tokens,该模型对标ChatGPT,并在多个领域表现出色。

Segment Anything
Segment Anything是一个基于深度学习的图像分割模型,它可以根据用户的输入提示(如点或框)生成高质量的物体遮罩。它可以用于为图像中的任何物体生成遮罩,无论是常见的物体(如人、车、猫等),还是罕见的物体(如火箭、恐龙、魔法棒等)。

盘古大模型
盘古大模型 3.0 是一个面向行业的AI大模型系列,包含自然语言、视觉、多模态、预测、科学计算大模型等五个基础大模型,可以为用户提供知识问答、文案生成、代码生成,以及多模态大模型的图像生成、图像理解等能力。

光语金帆
光语金帆是由无限光年公司推出的金融大模型,结合了顶尖的人工智能技术和人才资源,旨在构建超越客户期望的人工智能生成内容(AIGC)产品组合,推动金融行业生产力和用户交互体验的全面提升,实现金融服务的智能化、公平化和普惠化。
暂无评论...