
Hyper-SD简介
Hyper-SD 是字节跳动推出的一种先进图像生成框架,结合了轨迹分段一致性蒸馏(TSCD)和人类反馈学习(RLHF),显著提升了扩散模型在少步骤推理下的图像生成性能。该模型结合了轨迹保持和重构策略,实现了快速且高质量的图像生成,同时支持多种风格和可控生成,为生成式AI领域带来新SOTA性能。
与现有的扩散模型加速算法相比,该方法取得了卓越的加速效果。经过大量实验和用户评测的验证,Hyper-SD 在SDXL和 SD1.5 两种架构上都能在 1到8 步的推理过程中生成高质量的图像,极大地提高了生成速度和效率。

Hyper-SD:字节跳动推出的先进图像生成框架
项目地址:
- 项目主页:https://hyper-sd.github.io/
- 论文地址:https://arxiv.org/abs/2404.13686
- Huggingface 地址:https://huggingface.co/ByteDance/Hyper-SD
- 单步生成 Demo 地址:https://huggingface.co/spaces/ByteDance/Hyper-SDXL-1Step-T2I
- 实时画板 Demo 地址:https://huggingface.co/spaces/ByteDance/Hyper-SD15-Scribble
Hyper-SD的主要功能特点
- 轨迹分段一致性蒸馏:通过将扩散模型的时间步长划分为多个段落,并在每个段落内保持一致性,Hyper-SD 能够在减少去噪步数的同时,保持图像生成的高质量。
- 人类反馈学习(RLHF):结合人类审美偏好和现有视觉感知模型的反馈,Hyper-SD 能够生成更符合人类审美的图像,提升生成效果。
- 一步生成强化:使用分数蒸馏技术,Hyper-SD 增强了模型在单步生成中的性能,这对于需要快速生成图像的场景非常有用。
- 低步数推理:Hyper-SD 实现了在极少的步数内进行高效图像生成,显著减少了计算资源的消耗,同时保持了图像质量。
- 风格兼容性:训练得到的加速模型能够适应不同风格的图像生成,增加了模型的通用性和适用性。
适用场景
- 加速图像生成:Hyper-SD 可以显著缩短图像生成时间,提高生成效率,非常适合需要快速生成大量图像的场景。
- 提升图像质量:在单步推理中,Hyper-SD 能够生成高质量的图像,甚至超越原模型的效果,适用于对图像质量要求较高的应用。
- 资源受限环境:Hyper-SD 的低步数推理能力,使其在移动设备、嵌入式系统等计算资源有限的环境中也能高效运行。
- 艺术创作:为艺术家和设计师提供快速高效的图像生成工具,帮助他们更快地实现创意。
- 广告设计:帮助广告公司快速生成高质量的视觉内容,提升广告制作效率。
- 游戏开发:为游戏开发者提供高效的图像生成解决方案,缩短开发周期。
数据评估
关于Hyper-SD特别声明
本站新媒派提供的该工具内容都来源于网络,不保证外部链接的准确性和完整性,同时,对于该外部链接的指向,不由新媒派实际控制,在2024年7月14日 上午11:24收录时,该网页上的内容,都属于合规合法,后期网页的内容如出现违规,可以直接联系网站管理员进行删除,新媒派不承担任何责任。
与Hyper-SD相关工具

Llama 2是Meta AI推出的新一代大型语言模型(LLM),参数规模从70亿到700亿不等。它是为对话场景而优化的,称为Llama 2-Chat,能够在多数基准上超越开源的对话模型,并且在人类评估的有用性和安全性上,可能是闭源模型的合适替代品。

Auto-GPT
Auto-GPT 是一个使用 GPT-4 语言模型来自动执行多步骤项目的开源应用程序。它可以让 GPT-4 自主行动,根据自然语言的目标,自动地分解成子任务,并利用互联网和其他工具来实现它,而无需人工提示。
Animate Anyone
DreaMoving是一种基于扩散模型打造的可控视频生成框架,通过图文就能制作高质量人类跳舞视频。用户只需上传一张人像,以及一段提示词,就能生成对应的视频,而且改变提示词,生成的人物的背景和身上的衣服也会跟着变化。简单来说就是,一张图、一句话就能让任何人或角色在任何场景里跳舞。

HYPIR图像复原模型
HYPIR是一款高性能图像复原大模型,支持一键将模糊或受损图片修复至 8K 超清画质。采用单步对抗生成策略与扩散模型先验技术,具备极速推理、文字高保真还原及多场景图像适配能力,广泛应用于老照片修复、医学影像增强、文档清晰化与文化遗产数字化等领域。

Sora
Sora是一个能以文本描述生成视频的人工智能模型,由美国人工智能研究机构OpenAI开发。它能够根据用户的文本描述生成长达 60 秒、1080P 高质量视频,其中包含精细复杂的场景、生动的角色表情以及复杂的镜头运动。并在单个生成视频中创建多个镜头,准确保留角色和视觉风格。

Ferret-UI
Ferret-UI是苹果公司与哥伦比亚大学研究团队联合发布的一个多模态AI大语言模型。它专为增强对移动端用户界面(UI)屏幕的理解而设计,具备引用、定位和推理功能。这个模型能够理解手机屏幕上的内容并执行任务,专注于移动端和用户交互。

星流图像大模型
星流图像大模型由 LiblibAI 发布的一款自研图像大模型,名为 Star-3 Alpha。该模型基于业界领先的 F.1 基础算法架构训练而成,辅以全球最大的 LORA 增强模型库及不断进化的 AI 图像控制能力。在图像精准度、色彩表现力、美学捕捉的细腻表达等方面实现了显著的飞跃,成为新的业界标杆。

GPT-4o mini
GPT-4o Mini 是 OpenAI 最新推出的小型智能模型,专为高性能和低成本的人工智能解决方案而设计。它支持文本、视觉、音频等多模态输入输出,响应速度极快,适用于实时应用场景。

心辰Lingo语音大模型
心辰Lingo语音大模型是由西湖心辰(杭州)科技有限公司开发的端到端语音大模型。该模型具备原生语音理解、多种语音风格表达、语音模态超级压缩、实时打断和控制、深度情感理解等功能,能够以超拟人化的方式进行互动。这个模型不仅能快速响应复杂指令,还能深度理解用户的情感和意图。

VoxCPM
VoxCPM是由面壁智能(ModelBest) 联合 清华大学深圳国际研究生院人机语音交互实验室(THUHCSI) 开发并开源的无分词器文本转语音(Tokenizer-Free TTS)系统。 它采用端到端扩散自回归架构(Diffusion Autoregressive),直接从文本生成连续语音表示,突破了传统离散标记化方法的限制,在自然度、表现力和音色还原度上有显著提升。

悟道大模型
悟道大模型是智源研究院打造的人工智能模型系统,不仅具备强大的语言理解和生成能力,还能进行逻辑推理、代码分析、图像生成等多种任务,支持多种类型的文本内容生成,如小说、歌词、诗歌、对联等。

Darwin
Darwin是一个开源项目,专注于自然科学领域的大型语言模型构建,主要涵盖物理、化学和材料科学。通过对科学文献和数据集进行预训练和微调,Darwin 在科学问答和多任务学习任务中表现优异。它结合了结构化和非结构化的科学知识,提升了语言模型在科学研究中的效能。

CrewAI
CrewAI是一个创新的框架,专为角色扮演中的AI代理提供自动化设置。它通过促进AI代理之间的合作,使得这些代理能够共同解决复杂问题。CrewAI的核心特征包括角色定制代理、自动任务委派、任务管理灵活性和流程导向。它既可以使用OpenAI的API,也可以通过Ollama使用本地的大模型来运行程序。

Segment Anything
Segment Anything是一个基于深度学习的图像分割模型,它可以根据用户的输入提示(如点或框)生成高质量的物体遮罩。它可以用于为图像中的任何物体生成遮罩,无论是常见的物体(如人、车、猫等),还是罕见的物体(如火箭、恐龙、魔法棒等)。

FunAudioLLM
FunAudioLLM 是由阿里巴巴通义团队开发的旨在增强人类与大型语言模型(LLMs)之间的自然语音交互的框架。其核心包括两个创新模型:SenseVoice 和 CosyVoice。SenseVoice 提供高精度的多语言语音识别、情绪识别和音频事件检测,支持超过 50 种语言,并具有极低的延迟。CosyVoice 则专注于自然语音生成,支持多语言、音色和情绪控制,能够进行零样本语音生成、跨语言语音克隆和指令遵循。

Waver 1.0
Waver 1.0是 FoundationVision 推出的下一代通用视频生成基础模型,基于 Rectified Flow Transformer 架构,统一支持文本生成视频(T2V)、图像生成视频(I2V)与文本生成图像(T2I)。最高可生成 1080p 高分辨率视频,分辨率、宽高比与时长(2–10 秒)灵活可调;在 T2V 与 I2V 榜单均跻身前三,画质、运动幅度与时间一致性媲美商用方案。支持可控风格与质量、APG 伪影优化及 Cascade Refiner 高效升采样,适用于影视创意、游戏动画、教育科研等多场景。
暂无评论...












